
	
		
			
			
				Paul's UC & Dev/Ops Blog

				
					
	
	
	

			

		

	

	
		
			
				
					
						
							
	
		Create a PDF from Images with PowerShell
		
28 May, 2015

		
		Tags:
		
			PowerShell |
		
			Pester |
		
			Office
		
		

		
		I don’t know how your organization is but my experience is that all organizations have processes and invariably one, or more, of those processes can be byzantine. I experienced this first hand recently when I was asked to provide PDF versions of expense receipts.

My Workflow

So what I’ve been doing is taking a picture of receipts using my Windows Phone, which is set to upload a copy of my pictures to my OneDrive and then I was sending those pictures in. This was very easy and very convenient for me since I travel with my phone. I didn’t need to wait to get back into the office and I didn’t need yet another device in my bag or need to stop and setup something connected to my laptop. How to provide PDFs without completely doing away with my convinience?

NOTE: for my purposes these are receipts, but the same could apply for anything that you’re taking a picture of but want to convert into Word or PDF format, possibly with additional content.

Word.Application

This is the Apollo 13 moment where they put one of everything that they have in the capsule on the table in front of the engineers and ask them to come up with a way to put a square filter in a round hole.

I have Office, and Word can insert images into a document and save it as a PDF, so now I just have to automate the process.

So first thing is that I want some flexibility in how I call this, specifically so I can use ls and where to select the files I want, so I need to be able to accept images from the pipeline. Sometimes I also want to create a single document instead of more than one, and sometimes I want to remove the images once they have been converted, so I have a parameters for those options.

[CmdletBinding()]
param(
	[Parameter(ValueFromPipeline=$true)][string[]]$Images,
	[Parameter()][string]$CombinedFilename
)

Next I do the initial setup of creating a new instance of Word. I also setup some variables for use in the combined file case.

BEGIN {
	$word = New-Object -ComObject Word.Application

	$doc = $null
	$first = $true
	if($CombinedFilename) {
		Write-Verbose "Creating combined document"
		$doc = $word.Documents.Add()
	}
}

Creating Documents and Saving Them

Now we need to actually create the documents. For each images, we create a new document as needed, use AddPicture to add it to the current document and either save/close the document (if they are separate documents) or insert a new page for combined documents.

PROCESS {
	foreach($img in $Images) {
		if(!$doc) {
			$doc = $word.Documents.Add()
		}

		#6 is [Microsoft.Office.Interop.Word.wdunits]::wdstory
		$word.Selection.EndKey(6) | Out-Null
		$word.Selection.InlineShapes.AddPicture($img) | Out-Null
		if($CombinedFilename) {
			if($first) {
				$first = $false
			} else {
				$word.Selection.InsertNewPage()
			}
		}

		if(!$CombinedFilename) {
			$pdf = $img.Substring(0, $img.LastIndexOf('.')) + ".pdf"
			#17 is [microsoft.office.interop.word.WdSaveFormat]::wdFormatPDF
			$doc.SaveAs([ref]$pdf, [ref]17)
			#0 is [microsoft.office.interop.word.wdsaveoptions]::wdDoNotSaveChanges
			$doc.Close([ref]0)
			$doc = $null
		}
	}
}

One thing to note; I’m using the numeric value for WdSaveFormat and WdSaveOptions for testability. Specifically, I want to be able to test my scripts without having Word installed or the COM interop classes loaded.

Wrapping It Up

With all the hard work done, now it’s just about saving the combined file, if that’s what we’re creating, and quitting Word.

END {
	if($CombinedFilename) {
		$doc.SaveAs([ref]$CombinedFilename, [ref]17)
		#0 is [microsoft.office.interop.word.wdsaveoptions]::wdDoNotSaveChanges
		$doc.Close([ref]0)
	}

	#0 is [microsoft.office.interop.word.wdsaveoptions]::wdDoNotSaveChanges
	$word.Quit([ref]0)
	$word = $null
}

Let’s Not Forget Testing

I’ve talked about testing before so let’s not forget this important part. The testing in this case is a little different than the last time. This time we need to create Mocks. No problem, Pester supports mocking.

The first step is to setup functions to mimic the Word APIs we’re going to call. One stub function for each thing we’re going to test happened.

function QuitWord { param($opts) }
function AddDocument { }
function AddPicture { param($path) }
function InsertNewPage { }
function SaveDocument { param($path, $opts) }
function CloseDocument { param($opts) }

Next is some helper functions to make the mock statements cleaner. Note that some of the Word methods use reference parameters so in PowerShell we use [ref] but that results in a PSReference type object. Pester would have a hard time matching those with the ParameterFilter so before the call to the stub function, I unwrap the value from the PSReference object.

function NewDocument {
 $doc = New-Object psobject
 $doc | Add-Member -MemberType ScriptMethod -Name "SaveAs" -Value {
 param([ref]$path,[ref]$opts)
 SaveDocument $path.Value $opts.Value
 }
 $doc | Add-Member -MemberType ScriptMethod -Name "Close" -Value {
 param([ref]$opts)
 CloseDocument $opts.Value
 }
 return $doc
}

function NewWordApp {
 $docs = New-Object psobject
 $docs | Add-Member -MemberType ScriptMethod -Name "Add" -Value { AddDocument }

 $shapes = new-object psobject
 $shapes | Add-Member -MemberType ScriptMethod -Name "AddPicture" -Value {
 param($path)
 AddPicture $path
 }

 $sel = New-Object psobject @{InlineShapes = $shapes}
 $sel | Add-Member -MemberType ScriptMethod -Name "EndKey" -Value {
 param($opts)
 # ... no-op
 }
 $sel | Add-Member -MemberType ScriptMethod -Name "InsertNewPage" -Value {
 InsertNewPage
 }

 $word = New-Object psobject @{Visible = $false; Documents = $docs; Selection = $sel}
 $word | Add-Member -MemberType ScriptMethod -Name "Quit" -Value {
 param([ref]$opts)
 QuitWord $opts.Value
 }

 return $word
}

Finally the actual tests. You can see one mock statement for each of our stub functions.

Describe "Convert-JpgToPdf.ps1" {
 Mock New-Object { NewWordApp } -Verifiable -ParameterFilter { $ComObject -eq 'Word.Application' }

 Mock QuitWord { param($opts) }
 Mock AddDocument { NewDocument }
 Mock AddPicture { param($path) }
 Mock InsertNewPage { }
 Mock SaveDocument { param($path, $opts) }
 Mock CloseDocument { param($opts) }

 Context "Images on the command line as separate documents" {
 $images = @("fake-image1.jpg", "fake-image2.jpg")
 & $cmd -Images $images

 It "creates a word instance" {
 Assert-VerifiableMocks
 }

 It "creates 2 documents each with 1 image" {
 Assert-MockCalled AddDocument -Exactly -Times 2
 foreach($img in $images) {
 Assert-MockCalled AddPicture -ParameterFilter { $path -eq $img }
 }
 Assert-MockCalled InsertNewPage -Exactly -Times 0
 Assert-MockCalled SaveDocument -Exactly -Times 2
 foreach($img in $images) {
 $pdf = $img -replace '\.jpg$','.pdf'
 Assert-MockCalled SaveDocument -ParameterFilter { $path -eq $pdf -and $opts -eq 17 }
 }
 Assert-MockCalled CloseDocument -Exactly -Times 2 -ParameterFilter { $opts -eq 0 }
 }

 It "closes word nicely" {
 Assert-MockCalled QuitWord -Exactly -Times 1 -ParameterFilter { $opts -eq 0 }
 }
 }
}

There’s also a context for images on the command line as a combined document and the same (separate and combined document) contexts for images from the pipeline. See Convert-JpgToPdf.Tests.ps1 for all the tests.

Mocks, mocks, mocks, baked beans and mocks

There are other ways to achieve similar results. When I first wrote these tests I didn’t have the 6 stub functions. Instead I added the fake $doc to a script: scoped array each time I created it and in the It, I looped over it to make sure they were as expected. Sadly that didn’t work. I had a number of Write-Verbose statements, and I could see that they were being created and added but the array was empty when I checked it after.

A change in Pester 3.0 turned out the be the cause. From What’s New in Pester 3.0

“Tests.ps1 scripts are now executed in a separate scope than Pester’s internal code, preventing some types of bugs that would occur when a test script happened to define a function or variable name that matched something Pester uses internally (or mock calls to a function that Pester needs internally.)””

So the script: scope of my array was the issue. Not wanting to pollute my global scope restructured my tests to use all mocks instead.

Download the Script

 Convert-JpgToPdf.ps1

Download the Tests

 Convert-JpgToPdf.Tests.ps1

	

	 ← Testing Nirvana - 100% Code Coverage

	 Document Your ThinkTel DIDs →

	

Please enable JavaScript to view the comments powered by Disqus.

blog comments powered by Disqus

						

					

				
			

			
				
					
						About Me

						
							Just a guy who writes software and makes cool products. Working hard every day to create things people love and want. Interested in telecom, web, mobile, embedded, green tech and beer.

							
							Follow @paulvaillant
						

					

				

				
					
						Projects

							Backup-Lync.ps1
	Lync Utility Belt
	ThinkTel.LocalCallingGuide
	ThinkTel.uControl.Api
	ThinkTel.uControl.Cdrs

						Also check out the various scripts from this blog.

					

				

				
					
						Latest Posts

							Document Your ThinkTel DIDs — Jun 05, 2015

	Create a PDF from Images with PowerShell — May 28, 2015

	Testing Nirvana - 100% Code Coverage — May 22, 2015

	Testing Your PowerShell Scripts — May 18, 2015

	Classifying Phone Numbers — May 11, 2015

						Tags

							dotnet
	LcsCDR
	LcsLog
	licensing
	LRS
	Lync
	Lync-SDK
	NuGet
	Office
	Outlook
	Pester
	Philips-Hue
	PowerShell
	projects
	QoEMetrics
	RegEx
	SkypeForBusiness
	sql
	Testing
	ThinkTel
	uControl
	Wi-Fi

						Archive

							2015 (20)

					

				
			

		

	

	
		
			Design based on Developer by Xiaoying Riley.
				Content © 2015 Paul Vaillant
		

	

	
	
	

	
	
	
